RIG-I Signaling Is Essential for Influenza B Virus-Induced Rapid Interferon Gene Expression.

نویسندگان

  • Sanna M Mäkelä
  • Pamela Österlund
  • Veera Westenius
  • Sinikka Latvala
  • Michael S Diamond
  • Michael Gale
  • Ilkka Julkunen
چکیده

UNLABELLED Influenza B virus causes annual epidemics and, along with influenza A virus, accounts for substantial disease and economic burden throughout the world. Influenza B virus infects only humans and some marine mammals and is not responsible for pandemics, possibly due to a very low frequency of reassortment and a lower evolutionary rate than that of influenza A virus. Influenza B virus has been less studied than influenza A virus, and thus, a comparison of influenza A and B virus infection mechanisms may provide new insight into virus-host interactions. Here we analyzed the early events in influenza B virus infection and interferon (IFN) gene expression in human monocyte-derived macrophages and dendritic cells. We show that influenza B virus induces IFN regulatory factor 3 (IRF3) activation and IFN-λ1 gene expression with faster kinetics than does influenza A virus, without a requirement for viral protein synthesis or replication. Influenza B virus-induced activation of IRF3 required the fusion of viral and endosomal membranes, and nuclear accumulation of IRF3 and viral NP occurred concurrently. In comparison, immediate early IRF3 activation was not observed in influenza A virus-infected macrophages. Experiments with RIG-I-, MDA5-, and RIG-I/MDA5-deficient mouse fibroblasts showed that RIG-I is the critical pattern recognition receptor needed for the influenza B virus-induced activation of IRF3. Our results show that innate immune mechanisms are activated immediately after influenza B virus entry through the endocytic pathway, whereas influenza A virus avoids early IRF3 activation and IFN gene induction. IMPORTANCE Recently, a great deal of interest has been paid to identifying the ligands for RIG-I under conditions of natural infection, as many previous studies have been based on transfection of cells with different types of viral or synthetic RNA structures. We shed light on this question by analyzing the earliest step in innate immune recognition of influenza B virus by human macrophages. We show that influenza B virus induces IRF3 activation, leading to IFN gene expression after viral RNPs (vRNPs) are released into the cytosol and are recognized by RIG-I receptor, meaning that the incoming influenza B virus is already able to activate IFN gene expression. In contrast, influenza A (H3N2) virus failed to activate IRF3 at very early times of infection, suggesting that there are differences in innate immune recognition between influenza A and B viruses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pyruvate Carboxylase Activates the RIG-I-like Receptor-Mediated Antiviral Immune Response by Targeting the MAVS signalosome

When retinoic acid-inducible gene 1 protein (RIG-I)-like receptors sense viral dsRNA in the cytosol, RIG-I and melanoma differentiation-associated gene 5 (MDA5) are recruited to the mitochondria to interact with mitochondrial antiviral signaling protein (MAVS) and initiate antiviral immune responses. In this study, we demonstrate that the biotin-containing enzyme pyruvate carboxylase (PC) plays...

متن کامل

RIG-I Signaling Is Critical for Efficient Polyfunctional T Cell Responses during Influenza Virus Infection

Retinoic acid inducible gene-I (RIG-I) is an innate RNA sensor that recognizes the influenza A virus (IAV) RNA genome and activates antiviral host responses. Here, we demonstrate that RIG-I signaling plays a crucial role in restricting IAV tropism and regulating host immune responses. Mice deficient in the RIG-I-MAVS pathway show defects in migratory dendritic cell (DC) activation, viral antige...

متن کامل

Pigeon RIG-I Function in Innate Immunity against H9N2 IAV and IBDV

Retinoic acid-inducible gene I (RIG-I), a cytosolic pattern recognition receptor (PRR), can sense various RNA viruses, including the avian influenza virus (AIV) and infectious bursal disease virus (IBDV), and trigger the innate immune response. Previous studies have shown that mammalian RIG-I (human and mice) and waterfowl RIG-I (ducks and geese) are essential for type I interferon (IFN) synthe...

متن کامل

Influenza A virus polymerase inhibits type I interferon induction by binding to interferon beta promoter stimulator 1.

Type I interferons (IFNs) are known to be critical factors in the activation of host antiviral responses and are also important in protection from influenza A virus infection. Especially, the RIG-I- and IPS-1-mediated intracellular type I IFN-inducing pathway is essential in the activation of antiviral responses in cells infected by influenza A virus. Previously, it has been reported that influ...

متن کامل

Influenza A Virus PA Antagonizes Interferon-β by Interacting with Interferon Regulatory Factor 3

The influenza A virus (IAV) can be recognized by retinoic acid-inducible gene I (RIG-I) to activate the type I interferon response and induce antiviral effects. The virus has evolved several strategies to evade the innate immune response, including non-structural protein 1 (NS1) and its polymerase subunits. The mechanism by which NS1 inhibits interferon-β (IFN-β) is well understood, whereas the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 89 23  شماره 

صفحات  -

تاریخ انتشار 2015